GCE: Analysis, measure theory, Lebesgue integration No documents, no calculators allowed Write your name on each page you turn in

Exercise 1:

Construct a subset $A \subset \mathbb{R}$ such that A is closed, contains no intervals, is uncountable, and has Lebesgue measure $1 / 2$ (i.e. $|A|=1 / 2$). Also explain why your set A has each of the above properties.
Hint: One possible approach here is to adjust the construction of the Cantor set to achieve a Cantor-like set with measure $1 / 2$, but you don't need to have seen the Cantor set to answer the question.

Exercise 2:
(i). Let (X, \mathcal{A}, μ) be a measure space, and f_{n} a sequence in $L^{1}(X)$. Let f be in $L^{1}(X)$. Assume that $\int f_{n}$ converges to $\int f, f_{n}$ converges to f almost everywhere, and for each n, $f_{n} \geq 0$, almost everywhere. Show that f_{n} converges to f in $L^{1}(X)$.
Hint: Set $g_{n}=\min \left(f_{n}, f\right)$. Note that $\left|f_{n}-f\right|=f+f_{n}-2 g_{n}$.
(ii). Find a sequence f_{n} in $L^{1}(\mathbb{R})$ and f in $L^{1}(\mathbb{R})$ such that $\int f_{n}$ converges to $\int f, f_{n}$ converges to f almost everywhere, but f_{n} does not converge to f in $L^{1}(\mathbb{R})$.

Exercise 3:
(i). Let f be in $L^{1}([0, \infty))$. Show that

$$
\lim _{x \rightarrow 0^{+}} \int_{0}^{\infty} f(t) e^{-x t} d t=\int_{0}^{\infty} f(t) d t
$$

(ii). Let $[a, b]$ be an interval in \mathbb{R}. If \tilde{f} is continuous on $[a, b], g$ is differentiable on $[a, b]$ and monotonic, and g^{\prime} is continuous on $[a, b]$, we can prove that there is a c in $[a, b]$ such that

$$
\int_{a}^{b} \tilde{f} g=g(a) \int_{a}^{c} \tilde{f}+g(b) \int_{c}^{b} \tilde{f}
$$

Using this result, show that if g is as specified above and f is in $L^{1}([a, b])$, there is a c in $[a, b]$ such that

$$
\int_{a}^{b} f g=g(a) \int_{a}^{c} f+g(b) \int_{c}^{b} f
$$

(iii). Let f be in $L^{\infty}([0, \infty))$. Assume that there is a constant L in \mathbb{R} such that $\lim _{x \rightarrow \infty} \int_{0}^{x} f=L$. Show that

$$
\lim _{x \rightarrow 0^{+}} \int_{0}^{\infty} f(t) e^{-x t} d t=L
$$

