GCE: Analysis, measure theory, Lebesgue integration No documents, no calculators allowed Write your name on each page you turn in

Exercise 1:

Construct a subset $A \subset \mathbb{R}$ such that A is closed, contains no intervals, is uncountable, and has Lebesgue measure 1/2 (i.e. |A| = 1/2). Also explain why your set A has each of the above properties.

Hint: One possible approach here is to adjust the construction of the Cantor set to achieve a Cantor-like set with measure 1/2, but you don't need to have seen the Cantor set to answer the question.

Exercise 2:

(i). Let (X, \mathcal{A}, μ) be a measure space, and f_n a sequence in $L^1(X)$. Let f be in $L^1(X)$. Assume that $\int f_n$ converges to $\int f$, f_n converges to f almost everywhere, and for each n, $f_n \geq 0$, almost everywhere. Show that f_n converges to f in $L^1(X)$. **Hint**: Set $g_n = \min(f_n, f)$. Note that $|f_n - f| = f + f_n - 2g_n$.

(ii). Find a sequence f_n in $L^1(\mathbb{R})$ and f in $L^1(\mathbb{R})$ such that $\int f_n$ converges to $\int f$, f_n converges to f almost everywhere, but f_n does not converge to f in $L^1(\mathbb{R})$.

Exercise 3: (i). Let f be in $L^1([0,\infty))$. Show that

$$\lim_{x \to 0^+} \int_0^\infty f(t) e^{-xt} dt = \int_0^\infty f(t) dt$$

(ii). Let [a, b] be an interval in \mathbb{R} . If \tilde{f} is continuous on [a, b], g is differentiable on [a, b] and monotonic, and g' is continuous on [a, b], we can prove that there is a c in [a, b] such that

$$\int_{a}^{b} \tilde{f}g = g(a) \int_{a}^{c} \tilde{f} + g(b) \int_{c}^{b} \tilde{f}$$

Using this result, show that if g is as specified above and f is in $L^1([a, b])$, there is a c in [a, b] such that

$$\int_{a}^{b} fg = g(a) \int_{a}^{c} f(b) \int_{c}^{b} f(b)$$

(iii). Let f be in $L^{\infty}([0,\infty))$. Assume that there is a constant L in \mathbb{R} such that $\lim_{x\to\infty} \int_0^x f = L$. Show that

$$\lim_{x \to 0^+} \int_0^\infty f(t) e^{-xt} dt = L$$